Groupe hyperbolique

En théorie géométrique des groupes — une branche des mathématiques — un groupe hyperbolique, ou groupe à courbure négative, est un groupe de type fini muni d'une métrique des mots vérifiant certaines propriétés caractéristiques de la géométrie hyperbolique. Cette notion a été introduite et développée par Mikhaïl Gromov au début des années 1980. Il avait remarqué que beaucoup de résultats de Max Dehn concernant le groupe fondamental d'une surface de Riemann hyperbolique ne reposaient pas sur le fait qu'elle soit de dimension 2 ni même que ce soit une variété, mais restaient vrais dans un contexte beaucoup plus général. Dans un article de 1987[1] qui eut beaucoup de répercussions, Gromov proposa un vaste programme de recherche. Les idées et les ingrédients de base de la théorie viennent aussi du travail de George Mostow, William Thurston, James W. Cannon (en), Eliyahu Rips et bien d'autres.

  1. (en) Mikhaïl Gromov, « Hyperbolic groups », dans Essays in group theory, Springer, coll. « MSRI Publ. » (no 8), , p. 75-263.

Developed by StudentB